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Abstract

In this paper we propose a dedicated component-
based hybrid formalism, able to represent both con-
tinuous and discrete physical phenomena. The for-
malism merges concurrent automata with continu-
ous uncertain dynamic models. Our framework is
rather generic but focuses on the construction of in-
telligent autonomous supervisors by integrating a
continuous/discrete interface able to reason on-line
in any region of the physical system state-space, for
behavior simulation, diagnosis and system track-
ing.

1 INTRODUCTION

In the past few years, numerous works have been presented
to model embedded systems with hybrid models and reason
about them for simulation, diagnosis[McIlraith et al., 1999]
or verification[Alur et al., 1995] purposes. The modeling
framework usually expresses the different operating modes of
the system as a set of finite automata and associates to each
mode continuous knowledge encoded through standard nu-
meric differential equations. In this paper we propose a ded-
icated component-based hybrid formalism, able to represent
and integrate continuous and discrete physical phenomena.
The formalism merges concurrent automata with continuous
bounded uncertain models that are preferred over stochastic
models for robustness and guaranteed results reasons. How-
ever it is not sufficient to add continuous knowledge to au-
tomata, because moving between operating modes requires
the automatic construction of the structure of the newly as-
sembled continuous model. It means computing both the
characterization of the region of the state-space of the oper-
ating mode (denoted as aconfiguration), and a proper causal
ordering between the active variables in that mode. No pre-
study of the behavior of the physical system is required to
determine the state-space regions associated with the cur-
rent system configuration(s) because the search at continu-
ous level is casted into a boolean constraint satisfaction prob-
lem. A reasoning continuous/discrete interface (C/D I) is thus
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added, which provides an on-line generation of the character-
ization of the new model structure by making use of enhanced
Truth Maintenance techniques[Williams and Nayak, 1997a]
on the logical model. This is keypoint to our computing of
the diagnosis of hybrid model where detection is provided by
the continuous layer and state identification is performed at
the discrete logical level by searching for the current config-
uration consistent with observations. At the same time, the
logical framework allows the description of purely discrete
component behavior in the same manner as in[Williams and
Nayak, 1996]. In section 2 are described the discrete and the
continuous layers; section 3 presents the interface that inte-
grates both layers together; in section 4 are presented the al-
gorithms required to reason about hybrid models and to track
multiple trajectories in both simulation and diagnosis.

2 Hybrid System Formulation
2.1 Hybrid Systems as Transition Systems
The set of all components of the physical system to be mod-
eled is denoted byComps. Every component in that set is de-
scribed by a hybrid transition system. The set of all variables
used to describe a component is denotedV and is partitioned
in the following manner:

• Π = ΠM ∪ ΠC ∪ ΠCond ∪ ΠD — set of discrete vari-
ables of 4 distinct types (Mode, Command, Conditional,
Dependent),

• Ξ = ΞI ∪ΞD — set of continuous variables of 2 distinct
types (Input, Dependent).

Mode variablesΠM represent components nominal or faulty
modes, such ason or stuck off. Command variablesΠC are
endogeneous and exogeneous commands modeled as discrete
events to the system (e.g. software commands). Continu-
ous input variablesΞI are exogeneous continuous signals to
the system determined by its environment (e.g. known in-
puts or disturbances). Conditional variablesΠCond are spe-
cific discrete variables that represent conditions on continu-
ous variables. Discrete and continuous dependent variables
are all other variables. Finally the setObs contains observ-
able variables of the physical system. Each observable signal
has an explicit sampling period. Our hybrid transition system
is an extension of the standard transition system[Manna and
Pnueli, 1992].



Definition 1 (Hybrid Transition System – HTS) A Hybrid
Transition SystemHTS is a tuple (V , Σ, T , C, Θ) with:

• V = Π ∪ Ξ set of all variables.∀v ∈ V , the domain ofv
isD[v], finite for variables inΠ,R otherwise.

• Σ — set of all interpretations overV .
Each state inΣ assigns a value from its domain to any
variablev ∈ V .

• T — finite set of transition variables.
Each variableτm in T ranges over its domainD[τm]
of possible transitions of the mode variablem ∈ ΠM .
Eachτ im in D[τm] is a functionτ im : Σ→ 2Σ.

• C — set of (qualitative or quantitative) continuous con-
straints overV .
Each constraintc in C at least depends on one mode
variable in ΠM . ∀m ∈ ΠM , we noteC[m] the set of
constraints associated to the variablem.

• Θ — set of initial conditions.
Θ is a set of assertions overV such that they define the
set of initial possible states, i.e. the set of statess in Σ
such thats |= Θ.

Note that in aHTS, due to the continuous constraints inC,
some transitions can be triggered according to conditions over
continuous variables. At the discrete/continuous interface
level, these conditions have a corresponding discrete variable
in ΠCond, which captures their truth value.

States and Time
Considerations about time are central because both the dis-
crete and the continuous frameworks use time representations
that are different. At the continuous level, time is explicitely
represented in the equations that represent the physical sys-
tem behavior, we call itphysical timeθ. Physical time is dis-
cretized according to the highest frequency sensor, providing
theHTS reference sampling periodTs. x(kTs), or x(k) for
short, specifies the value of the continuous state-variables in
Ξ. We callabstract timethe time at the discrete level. It is
dated according to the occurrence of discrete events. At date
t, the discrete stateπt of aHTS is the tuple(Mt, Qt), where
Mt is the vector of instances of mode variables, andQt the
vector of instances of variables ofΠ in qualitative constraints.
Discrete state-variables are inΠ\ΠCond. Abstract time dates
are indexed on physical time, which informs about how long
a component has been in a given discrete state. Ift = kTs,
then we write the indexed datetk. When there is no ambigu-
ity it is simply denoted byt. Thehybrid statestk of aHTS
is the tuple(πtk , x(k)).

Transitions
Transitions describe changes between mode values over the
time. ∀m ∈ ΠM , ∃τm ∈ T , such thatD[τm] = {τ im ∈
TN} ∪ {τ jm ∈ TF } ∪ {τ id}, with:

• TN the set ofnominaltransitions,

• TF the set offaulty transitions,

• τ id the id transition.

Nominal transitions express switches from one nominal mode
to another, whereas fault transitions move the system into a

faulty mode. Because transitions cannot be considered as in-
stantaneous against the frequency of the sensors, we intro-
duce delays on nominal transitions. Delaydτ im is such that
once a transitionτ im is enabledit is triggered afterdτ imTs, i.e.
after dτ im physical time units. While a transition isenabled
and waiting for its delay to expire, it is said to be instandby
state. A delay on transition can also be modeled by adding
modes and clocks to the hybrid transition system[Henzinger,
1996]. We do not use this representation here because we
think that it does not enforce the easy representation of a com-
ponent as a transition system by creating modes that are irrel-
evant for the diagnosis purpose. Abrupt fault transitions have
no explicit delay, i.e. their duration is one physical time unit.
For a matter of simplification, the delay will be referred asd
when there is no ambiguity.
Definition 2 (pre and post assertions)For a given transi-
tion τ im and a given statestk ∈ Σ, we note assertions
pre(τ im) = mj∧φiΠC∪Cond(stk) andpost(τ im) = mj′ where:

• mj andmj′ are two instances of the mode variablem,

• φiΠC∪Cond(stk) is a logical condition over instances of
variables of bothΠC andΠCond in stk .

We refer to theguard of a transition as the condition state-
mentφiΠC∪Cond that triggers the transition. Only fault transi-
tions can be spontaneous, so their guard can be always true.
Traditionnally, probabilities are also attached to every nomi-
nal and faulty transitions.

2.2 Component modes behavior
The behavior of a component is encoded as a set of nominal
and faulty modes that exhibit a discrete or a continuous be-
havior depending on the component type. For discrete com-
ponents, the behavioral model is given by a set of constraints
overΠC ∪ΠD associated to each mode variable. Such equip-
ments are usually software drivers as well as complex elec-
tronic devices. For continuous components, the continuous
behavior is expressed by discrete-time continuous constraints
over Ξ. Each constraint is attached to a mode of the transi-
tion system. Note that theunknownmode is rather specific as
it has no constraints and thus covers all interpretations inΣ.
The discrete-time continuous constraints are of the following
form:{

x(k + 1) = Ax(k) +
∑
j=0,...,r Biu(k − j)

y(k + 1) = Cx(k + 1) (1)

wherex(k), y(k), andu(k) represent the state vector of di-
mensionn, observed variables vector of dimensionp and con-
trol variables of dimensionq at timekTs, respectively;A,Bi
andC are matrices of appropriate dimensions. Continuous
constraints are encoded in a specific two levels formalism
[Travé-Massuỳes and Milne, 1997] which includes a causal
model and an analytical constraint level. The causal model is
obtained from equation (1) by expressing it as a set ofcausal
influencesamong the continuous variables. The underlying
operational model of dynamic influences is provided by the
following equation:

ξj(k+1) =
∑

p=0,...,n−1

apξj(k−p)+
∑

q=0,...,m

bqξi(k+1−q)

(2)



whereξi andξj are continuous variables andn is the influ-
ence order andm ≤ n (causal link). Usually an equation
is modeled by a set of influences of many types: dynamic,
integral, static and constant. Dynamic influences are char-
acterized with a gainK and a delayTd, as well as with the
response timeTr for a first order relation, the damping ra-
tio ζ and the undamped natural frequencyω of the system
for a second order relation. Other types also obey equation
(2) with different parametersap andbq. Every influence is
conditioned by a logical assertion over variables inΠCond.
An influence is said to beactivewhen its condition is true.
When necessary, uncertainties can be taken into account in
the influence parameters and as additive disturbances. The
first are represented by considering that parametersap andbq
have time independent bounded values, i.e. they are given
an interval value. The latter can be introduced as a bounded
value constant influence acting onξj . From the superposition
theorem that applies to the linear case, the computation of
the updated value of variableξj ∈ Ξ in an equationeq con-
sists of processing the sum of the activated influences from
eq having exerted onξj during the last time-interval. The
prediction update of all the state and observed variablesx(k)
andy(k) from the knowledge of control variablesu(k) and
influence activation conditions is performed along the causal
model structure. Our representation of uncertainties leads to
the prediction of continuous variable trajectories in the form
of bounded envelopes. In other words, the system statex(k)
at every time instantt = kTs is provided in the form of a
rectangle of dimensionn.

Definition 3 (Causal system description – CD)The causal
system description associated to the set of continuous con-
straints of aHTS is a directed graphG = (Ξ, I) whereI is
a set of edges supporting the influences among variables in
Ξ, with their associated conditions and delays.

The numerical intervals obtained from equation (2) are re-
fined at the analytical model level with global constraints
by performing a tolerance propagation algorithm[Hyvonen,
1992] on the set of variables.

2.3 Moving between modes
When a transition triggers, the component switches from one
mode to another, the correspondingHTS needs to trans-
fer its continuous state vectorx as well. For that reason
each transitionτ im is associated with amapping function
lτ im : Σ → Σ over the dependent variables inV . It initial-
izes the value of a subset of variables in the hybrid state re-
sulting from applyingτ im to stk

l
wherel is the abstract time

index. Other variables instk
l

keep their previous value. The

identity mapping function is denotedlid. Triggering a transi-
tion is a two steps operation[Mosterman and Biswas, 2000;
Alur et al., 1995]. First, mode change is performed by apply-
ing the transitionτ im to the current hybrid state and moving
to the resulting mode after its delay has expired (transition

relation
τ im→).

τ im ∈ T , (stk
l
, stk+d

l+1
) ∈ Σ2, stk

l
|= pre(τ im)

stk
l

τ im→ stk+d
l+1

(3)

Second, initialization is performed by making use of the map-
ping function, and physical time goes on (time-step relation
θ→):

(πtl+1 , x(k + d)) = lτ im(stk
l
)

(πtl+1 , x(k + d)) θ→ (πtl+1 , x(θ))
(4)

wherex(θ) is the continuous state associated to discrete state
πtl over the continuous timeθ.

2.4 Hybrid Component System
Once components have been modeled asHTS, they need
to be aggregated in aHybrid Component Systemto model
the entire physical plant. Components are instanciated and
their models form reusable databases. Within the whole plant
model, components are concurrent, i.e. able to evolve inde-
pendently.

Definition 4 (Hybrid Component System – HCS)
A Hybrid Component SystemHCS is a tuple
(Comps, V,Σ, T, C,Θ) with Comps being a set ofn
components modeled as concurrent hybrid transition systems

Hi = (Vi,Σi, Ti, Ci,Θi),
(⋃

i=1,···,n Vi

)
= V , Σ ⊆

⊗
i Σi,

T =
⋃
i Ti, C =

⋃
i Ci, Θ =

⋃
i Θi.

The n hybrid transition systems of aHCS are concurrent.
Constraints and commands synchronize on shared variables
in ΠD, ΠC andΞ, then the automata communicate through
shared variables and synchronize on transitions. The iden-
tity transition synchronizes stationary components when it is
necessary for their constraints to be shared. The process is
largely complexified by the introduction of delays on transi-
tions and cannot be fully described in this paper. Basically
it relies on the hypothesis thatwe cannot track or diagnose
a physical component while it is switching from one mode
to another, i.e. when one of its transitions is instandby, as
the required transient models are often unknown or too com-
plex. The consequence is that components only synchronize
in their non-standby states.

2.5 Example

where:
C[open] : ẋ = aQo(∆x)
C[closed] : ẋ = aQc(∆x) where∆x = xe − x.

Figure 1: room with unknown mode

Figure 1 shows theHTS of a roomR submitted to a tem-
perature source. It has two nominal modes:open (a door
or a window is opened) andclosed. The room temperature



where:
C[off ] : xe = xext
C[on] : xe = h

Figure 2: thermostat with fault modes

x is influenced by the temperature of the sourcexe accord-
ing to a first-order differential equation which accounts for
the room characteristicsQc (closed) andQo (open). The
actions that move the room from one mode to another are
modeled as observed single discrete commandscmd = open
andcmd = close. Figure 2 presents the model of a thermo-
statT , with faulty and unknown modes, as well as required
transitions. This thermostat switches according to the room
temperaturex (it should move to itson mode when the tem-
peraturex ≤ m to warm up the room, and back to itsoff
mode whenx ≥ M to cool it down).x is hence influenced
by the heater setting temp h (on modeon) or by the outside
temperaturexext (on modeoff). The temperature variation
ẋ is observed through a sensor with additive noiseẋnoi. Ini-
tially, x = xext, the room isclosedand the thermostat ison.
Variables of theHCS are:
R.mode ∈ ΠM = (closed, open, unknown)

R.cmd ∈ ΠC = (none, open, close)

R.c ∈ Πcond = (R.x ≤ m,R.x > m ∧ R.x < M ,R.x ≥M)

T.mode ∈ ΠM = (off, on, stuck on, stuck off, unknown)

R.x ∈ ΞD ∈ [−∞,+∞]

R.ẋ ∈ ΞD ∈ [−∞,+∞]

R.∆x ∈ ΞD ∈ [−∞,+∞]

R.ẋnoi ∈ ΞI ∈ [−1, 1]

R.Qc ∈ [0.05, 0.15]

R.Qo ∈ [0.02, 0.05]

R.a ∈ [0.9, 1.1]

Obs = {ẋ}

The feasible continuous states ofΣ are specified by the influ-
ences in eachHTS:

R.i1 (static) : if (R.mode = closed) thenR.∆x
gain=Qc−→ R.ẋ

R.i2 (static) : if (R.mode = open) thenR.∆x
gain=Qo−→ R.ẋ

R.i3 (integral) : R.
gain=a−→ R.x

R.i4 (static) : R.x
gain=−1−→ R.∆x

T.i1 (constant) : if (T.mode = on ∨ T.mode = stuck on) then

T.h −→ R.∆x

T.i2 (constant) : if (T.mode = off ∨ T.mode = stuck off) then

R.xext −→ R.∆x

T.i3 (constant) : T.xnoi −→ R.ẋ

Influences without explicit conditions are valid in all modes
except for theunknownmode.T is represented as follows (©
is the next operator from temporal logic):

R.τ
1
nom : R.mode = closed ∧ R.cmd = open © R.mode = open

R.τ
2
nom : R.mode = open ∧ R.cmd = closed © R.mode = closed

R.τ
1
fail : R.mode = open ∨ R.mode = closed © R.mode = unknown

T.τ
1
nom : T.mode = off ∧ R.x ≤ m © T.mode = on

T.τ
2
nom : T.mode = on ∧ R.x ≥M © T.mode = off

T.τ
1
fail : T.mode = on ∧ R.x ≥M © T.mode = stuck off

T.τ
2
fail : T.mode = off ∧ R.x ≤ m © T.mode = stuck on

T.τ
3
fail : T.mode = on © T.mode = stuck on

T.τ
4
fail : T.mode = off © T.mode = stuck off

T.τ
5
fail : T.mode = on ∨ T.mode = off © T.mode = unknown

Figure 3 presents the nominalCD of theHCS resulting from
the composition of the two components.

Figure 3: Causal nominal system description of the thermo-
stat and room example

3 Continuous/Discrete Interface
3.1 Configurations
Depending on the mode at a given time, aHCS has its hy-
brid state that ranges over several continuous regions. These
regions are known to be difficult to determine and compute, if
not undecidable. We propose an on-line mechanism to keep
track of the state-space partition by sheltering every continu-
ous functional piece with a conjunction of logical conditions
we denote as aconfiguration.

Definition 5 (HCS configuration) A configuration for a
HCS at time-step tk is a logical conjunctionδtk =
(
∨
im

i) ∧ (
∧
j Πj

Cond) where themi are instanciations of

component modes inΠM and theΠj
Cond are variables of

ΠCond.

The configurations are automatically drawn from condi-
tions on both transition guards and influences that define
structural changes in the model. A configuration can be at-
tached to one or more modes inΠM . In our example, the
continuous state is easily partitioned by the thermostat’s tran-
sitions into three regions determined by the three conditions
on variablex, defining18 configurations:
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Figure 4: 3-layers interactions

C1 : R.mode = closed ∧ T.mode = on ∧ R.x ≤ m
C2 : R.mode = closed ∧ T.mode = on ∧ (R.x > m ∧ R.x < M)

C3 : R.mode = closed ∧ T.mode = off ∧ (R.x > m ∧ R.x < M)

C4 : R.mode = closed ∧ T.mode = off ∧ R.x ≥M
. . .

Whatever the complexity of the physical system is, it is
easy to logically express the conditions as two modalities
variables ofΠCond, made of the condition and its negation,
but it leads to partitions that are not optimal. However when
reasoning on theHCS, configurations are sound because log-
ically unconstrained solutions are ruled out when returning to
the continuous values of variables. Note that the configura-
tion associated to theunknownmode encompasses the overall
state-space.

3.2 Causal ordering for static equations
When switching from one mode to another, some equations
and variables are added or retracted according to the new
configuration; in consequence, due to the possible presence
of static continuous equations in the model, a proper causal
ordering of variables is to be found when entering the new
mode. A brute force approach would consist in generating a
new causal structure for every different mode. The problem
of performing an on-line incremental generation of the causal
structure has been previously addressed[Travé-Massuỳes and
Pons, 1997] but it is solved here in a slightly different manner.
This is done by first casting the problem into a boolean con-
straint satisfaction problem: every continuous equation and
variable in theHCS is associated to boolean variables inΠ
whose truth values state if the variables or equations are ac-
tive or not. Rules over the boolean variables are automatically
built to represent the conditions of these activations and form
a logical representation of the causal-ordering problem.

3.3 Overview
The previous configuration and causal ordering problems are
solved on-line by using a truth maintenance system (TMS) to
reason on the corresponding boolean constraint satisfaction
problems. The context switching algorithms of[Williams
and Nayak, 1997a] are useful because we are not interested
in generating all configurations of the physical system but to
switch from one to another as fast as possible. TheHCS
reacts to events, i.e. observations from sensors as well as
commands, and propagates them to the model’s discrete and

continuous levels through the logical interface and the way
back. Figure 4 sums up these interactions. The C/D I, made
of the variables inΠCond associated to influence conditions
and transition guards, as well as the causal ordering logical
model, ensures the logical consistency of the changes trig-
gered by the flow of events.

4 Simulation and Diagnosis of a Hybrid
Component System

4.1 Simulation
A HCS simulation is a run of concurrent hybrid transition
systems that generates possible nominal trajectories of the
HCS according to issued commands and inputs over the
time. The uncertainty on the continuous constraint param-
eters determines the precision of the computed envelopes that
enclose the observed behavior of the physical system at each
time step.

Sometimes the truth value of a condition in a configuration
may be undetermined when checked against a rectangular en-
closing of the continuous state-variables. The problem arises
from the fact that some variables over which configurations
rely are not measured. When the computed bounds of such a
continuous variableξi span over more than one configuration
region relying on that variable, we say that the currentconfig-
uration is splitting the continuous state on variableξi. Figure

Figure 5: Transition guard split

5 shows a simple example of a configuration split for the ther-
mostat example when crossing oatx = M . The current con-
figuration splits on regionsx1 andx2 and the two possible
trajectories are tracked simultaneously. In applications, this
situation happens rather frequently and multiple consecutive
splits of a guard on the same variable can occur because sen-
sor frequencies are usually beneath thetemporal uncertainty
induced by the envelopes. We first want to split the contin-
uous state into logical branches then refine consequently the
bounds on all continuous variables in every explored branch.
For a given continuous variableξi, the logical split from a
configurationδtk returns the set of possible configurations to
be tracked:

[δtk ](ξi) =
∨
j

(
Πj
Condξi

∧

(∧
n

Πn
Cond

))
(5)

where Πj
Condξi

are variables ofΠCond relying on ξi and
Πn
Cond other conditions inδtk . Relation (5) is used to com-



pute the splitted areas because it is much faster than exploring
the overall continuous state space. The following algorithm
is applied on every tracked trajectory:

1. Search for a continuous variableξi over which the cur-
rent configurationδtk is splitting.

2. Logically split the state-space with relation (5). To each
configurationδj

tk
in [δtk ](ξi) we note its corresponding

continuous regionxjξi(k) andπj
tk
,ξi its corresponding

discrete state.

3. Envelopes over variables inΞ are refined in every region
xjξi(k) by filtering them on the constraints defined by the
conditions in the configuration[Hyvonen, 1992].

4. (πj
tk
,ξi , x

j
ξi

(k)) constitute new hybrid states enclosed in
new trajectories to be tracked.

The three preceding steps are applied for remaining variables
on the growing set of generated trajectories. Finally the re-
sulting set of computed hybrid states is:

[stk ] =
⊗
i,j

(πj
tk
,ξi , x

j
ξi

(k)) (6)

In our example, the thermostat’s configurations only split
on the temperaturex. On figure 5, until time-steptkl , the
configuration of theHCS is

C2 : R.mode = closed∧T.mode = on∧R.x > m∧R.x < M

At time-steptkl , due to the crossing ofx = M , the current
configuration is splitted onx. A new partial hybrid state
comes from equation (5):

R.mode = closed ∧ T.mode = on ∧R.x ≥M

Then bounds of variablex are refined in each configura-
tion by filtering the values with respective constraintsR.x >
m ∧ R.x < M andR.x ≥ M . As transitionT.τ2

nom turns
enabled, the configuration is instantaneously (T.τ2

nom has no
delay) updated to:

C4 : R.mode = closed ∧ T.mode = off ∧R.x ≥M (7)

From that point the system tracks two distinct trajectories.

4.2 Fault Detection
The detection algorithm then uses the above estimation of the
endogeneous continuous variable values in asemi closed-loop
mode: it runs inclosed-loopmode, i.e. resetting envelopes
with observations, as long as no alarm is detected (a measured
variable is out of its predicted bounds); when alarming, it per-
forms pureopen-loopsimulation to avoid following the fault
[Travé-Massuỳes and Milne, 1997]. Note that theclosed-loop
andopen-loopmodes are identical for non dynamically in-
fluenced variables, as well as not relevant for non measured
variables. Detection is also used to rule out misleading tra-
jectories previously generated.

Figure 6 shows three scenarios with faults where detection
is applied. On the first scenario the thermostat fails to switch
at time-step59 and sticks to itson mode. In the second sce-
nario the constantT.h is degraded from time-step51 to a

lower value, so the heater is slower to warm the room. Sce-
nario three presents an abrupt fault characterized by a struc-
tural change in the thermostat model. For each scenario the
system is tracked insemi-closedloop mode until the obser-
vation onẋ lies outside the computed bounds. Usually the
diagnosis operation is triggered when no more tracked trajec-
tories are consistent with observation, and a few steps after
the fault has been detected, in order to avoid false alarms.

4.3 Diagnosis
When a fault is detected, a diagnosis comes back to find the
current configuration of theHCS according to observations,
inputs and commands. This must be performed over a fi-
nite temporal window to avoid loosing solutions[Nayak and
Kurien, 2000].

Definition 6 (HCS Diagnosis) A diagnosisdiag(t) overm
time-steps for aHCS is such thatdiag(t) = {δt}t=1,···,m
with the consitency of:

HCS ∪Obst=1,...,m ∪

( ⋃
t=1,···,m

δt

)
(8)

Solving relation (8) is a three steps operation. First, exist-
ing conflicts (a set of influences which cannot be unfaulty
altogether) are exhibited from the causal system description
(CD) of theHCS, each influence stamped with a temporal
label and activation condition. They are then turned into diag-
nosis candidates by a failure-time oriented enhanced version
of the hitting set algorithm[Travé-Massuỳes and Jimenez,
2001]. Temporal information is drawn from the delays of the
influences inCD. Second, at the configurations level, the
TMS negates the activation conditions of the conflicting in-
fluences and fastly iterates through the logical remaining con-
figurations to reinsure the consistency. Finally, every found
configuration is checked against the past observations over a
finite temporal window before being approved as in[Nayak
and Kurien, 2000] except that candidate generation and con-
sistency checks are interleaved from present time back to the
beginning of the temporal window. Configuration solutions
to the diagnosis problem contain a mode instanciation of ev-
ery necessary component in theHTS explaining the obser-
vations.

When applied to the first scenario, the diagnosis starts
as soon asẋ goes out of its bounds for all currently
tracked trajectories: iterating through the system nominal
CD from figure 3, at timestep66 the influences in con-
flict are Γ = {T.i3, T.i2, R.i1, R.i3, R.i4}. Rela-
tively to the current configuration (7) it is equivalent to
add the constraintsΓC = {

∨
mi=D[T.mode] T.mode =

mi, R.mode = closed, T.mode = off ∨ T.mode =
stuck off,

∨
mj∈D[R.mode]R.mode = mj} which are acti-

vation conditions on the influences in conflict. In this case
there are no delays in the equations and the conflicts are
stamped with the current physical time.

The TMS then seeks for consistency on both the con-
figurations and the transition model starting from the cur-
rent configuration by inserting the negation of the elements
in ΓC : Γ¬C = {T.mode = unknown,R.mode =
open ∨ R.mode = unknown, T.mode = on ∨ T.mode =
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(a) Scenario1, x: shows the last valid envelope before the
fault on the controller is detected. Other envelopes have
been discarded because as switching early the thermostat
to modeon they did not match the observations anymore
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(b) Scenario1, ẋ: by letting time progress the envelope will
eventually catch the observation again.
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(c) Scenario2, x
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(d) Scenario2, ẋ: The fault is not so abrupt as to be de-
tected instantaneously. Moreover it is masked at time-step
73 (it goes in the predicted bounds again) for more than
20 time-steps. This is due to the fact that the thermostat’s
controller is still switching on valid thresholds.
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(e) Scenario3, x:
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(f) Scenario3, ẋ

Figure 6: Three fault scenarios



stuck on ∨ T.mode = unknown,R.mode = unknown}
and returns the following possible configurations ranked ac-
cording to the probabilities attached to transitions and to the
number of faults leading to them:

1 : (R.mode = closed) ∧ (T.mode = stuck on) ∧ (R.x ≥M)

2a : (R.mode = closed) ∧ (T.mode = unknown) ∧ (R.x ≥M)

2b : (R.mode = unknown) ∧ (T.mode = stuck on) ∧ (R.x ≥M)

3 : (R.mode = unknown) ∧ (T.mode = unknown) ∧ (R.x ≥M)

Other configurations with the thermostat in modeson,
stuckoff, or the room in modeopenare ruled out during the
search process because there are no transitions or past obser-
vations and commands consistent with these configurations.
Diagnosis1 fits with the fault in the first scenario (thermo-
stat took transitionτ3

fail). Scenarios2 and3 primarily lead
to diagnosis3 where the room and the thermostat are in the
unknownmode. However this situation could be improved in
scenario2 by using parameter estimation techniques as pro-
posed in[McIlraith et al., 1999] because the structure of the
model is still valid. Note that such faults could also result
from the natural degradation of the monitored system and
can be taken into account in causal models as in[Ponset al.,
1999]. Moreover, if∆x was to be observed, the room and the
thermostat would be decoupled so that the room would not
move to its unknown mode when the thermostat does.

5 Summary and Discussion
In this paper we extend previous work in the AI commu-
nity [Williams and Nayak, 1996; Nayak and Kurien, 2000]
by presenting a formalism that merges concurrent automata
with continuous dynamical system models and reasons on its
configurations using logical tools. The problem of reasoning
about and diagnosing complex physical plants without exten-
sive study of their continuous state-space is addressed. It is
to be applied to the supervision of autonomous satellites as
in [Benazeraet al., 2001]. At the moment the modeling and
simulation tools have been implemented, including the en-
gine that splits the configurations. The program generates a
C++ runtime that is intended to be demonstrated on an au-
tonoumous spacecraft test bench at CNES.

An advantage of this approach is that any conditions on
transitions and influences (e.g. continuous functions) can be
modeled and tracked without being directly observed. More-
over solutions to tracking and diagnosis are logically com-
plete, and sound due to the continuous level structure and
variables values. Finally on-line performances can be en-
hanced as the formalism allows the logical model to be pre-
compiled before use by generating prime-implicants on tran-
sition guards[Williams and Nayak, 1997b] and influence
conditions. However it still happens that trajectories cannot
be discriminated due to too much imprecision on parameters
that leads to overlaping envelopes. A solution to this prob-
lem is to merge such envelopes and corresponding trajecto-
ries. Another remark concerns the splits that occur and are
not linked to any real mode or structure changes in the model:
when starting the thermostat and room models with external
temperaturexext < m, a split occurs when first crossing at
x = m. These splits however are sound and refine the bounds

on continuous variables as they allow the system to reduce
temporal uncertainty at the crossing point.

Further work will focuse on reconfiguration by reasoning
on configurations with the same core algorithms as for diag-
nosis. This will be done by identifying a set of goal configu-
rations and find under uncertainty a valid plan made of least
costly endogeneous commands to reach these goals. In a near
future more results are to come as our implementation is in-
tended to be tested on spacecraft models and run on-board
ground based satellite hardware.

6 Related Work
Few hybrid formalisms use interval-based uncertain models:
however the model checking community has recently inves-
tigated this direction[Henzingeret al., 2000]. Previous work
on the diagnosis of hybrid systems include[McIlraith et al.,
1999] that uses parameter estimation and data fitting to refine
the diagnosis. In[Williams et al., 2002] unifies traditional
continuous state observers with hidden Markov models belief
update for single automatons in order to track hybrid systems
with noise. [Asarin et al., 2001] finds the conditions upon
which a controller should switch the behavior of the system
from one mode to another in order to avoid bad configura-
tions and[Rinner and Kuipers, 1999] uses trackers on semi-
quantitative models to monitor dynamic systems even with
incomplete knowledge.
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